
2026/01/08 10:40 1/11 SSH-Verbindungen

kwiki - https://wiki.bluegnu.de/

SSH-Verbindungen

Secure Shell oder SSH bezeichnet ein kryptographisches Netzwerkprotokoll für den sicheren Betrieb
von Netzwerkdiensten über ungesicherte Netzwerke.

Hinweise: https://wiki.ubuntuusers.de/SSH/

Empfehlenswerte Einstellungen für einen Server, der über das Internet erreichbar ist (z.B.
ein Webserver):

Den direkten Zugang für „root“ von Außen ausschließen.
Den Zugang mit Passwort von Außen generell ausschließen.
Zugang nur mit Schlüssel.
Optional z.B. für Webserver: Beschränkter Zugriff über SFTP auf definierte Bereiche
(HTML-Files …)

SSH-Schlüssel

Für den Zugriff mit einem Schlüssel muss zunächst einer generiert werden. Dabei wird i.d.R. ein
Schlüsselpaar generiert, das aus einem privaten und einem öffentlichen Schlüssel besteht und das
miteinander agiert. Der private Schlüssel bleibt lokal und geheim, der öffentliche wird an externe
Systeme verteilt.

SSH-Key unter Linux generieren

Auf einem (lokalen) Linux-System das Programm open-ssh-client installieren und Schlüssel
generieren.

sudo apt install openssh-client

ssh-keygen -t rsa -b 4096

t = Typ (hier rsa)
b = Schlüssellänge (hier 4096 Bit)

Sofern nicht anders angegeben, liegt der neue Schlüssel automatisch im (versteckten) Verzeichnis
~/.ssh/
Den Schlüssel ohne Passwort zu generieren, vereinfacht das spätere Login, da dann kein Passwort
mehr angegeben werden muss. Die 2FA wird aber empfohlen.
Soll der private Schlüssel auf ein anderes Systeme kopiert werden, um ihn auch von dort nutzen zu
können: Auf dem neuen System müssen die Zugriffsrechte genauso eingeschränkt werden. Anderfalls
gibt es Verbindungsprobleme.
privater Schlüssel: .ssh/id_rsa -rw——- Owner & Group = User

https://wiki.ubuntuusers.de/SSH/

Last update: 2025/12/12 21:11 open:it:ssh https://wiki.bluegnu.de/doku.php?id=open:it:ssh&rev=1765570279

https://wiki.bluegnu.de/ Printed on 2026/01/08 10:40

öffentl. Schlüssel: .ssh/id_rsa.pub -rw-r–r– Owner & Group = User

Der private Schlüssel muss unbedingt vor fremdem Zugriff geschützt bleiben!
Das betrifft auch den Transfer der Dateien (USB-Stick, E.Mail, etc.)
Versand per E-Mail nur mit verschlüsselter E-Mail!

Bei der Erstellung werden 2 Dateien angelegt:

id_rsa (privater Schlüssel)
id_rsa.pub (öffentlicher Schlüssel)

Der öffentliche Schlüssel wird auf das entfernte System übertragen, auf das zugegriffen werden soll.
Der private Schlüssel bleibt auf dem lokal System, auf dem er generiert wurde. Für jedes weitere
(lokale) System sollte jeweils ein eigener Schlüssel generiert werden.
Werden privater und öffentllicher Schlüssel auf einen anderen PC kopiert, kann auch von dort aus auf
die Server zugegriffen werden - ohne das der öffentliche Schlüssel neu auf diese Server übertragen
werden muss.

Zur Übertragung auf einen Server muss der User bereits dort angelegt sein und der Zugriff ohne
Schlüssel (mit Passwort) muss temporär freigegeben werden.
Den öffentlichen Schlüssel (id_rsa.pub) wie folgt auf den Server übertragen:

ssh-copy-id <USER>@<REMOTEHOST>

Ersetzen: <USER> und <REMOTEHOST>
Das Passwort vom <REMOTEHOST> wird abgefragt.

Im <REMOTEHOST>-Home-Verzeichnis vom <USER> liegt die Datei ~/.ssh/authorized_keys. In
diese Datei werden die gültigen Public-Keys (automatisch) eingetragen. Das Verzeichnis ist versteckt.
Parallel wird auf dem lokalen (Linux-)Rechner der (neue) entfernte Host in der Datei
~/.ssh/known_hosts aufgenommen. Ist der Host dort bereits enthalten, ggf. mit anderem Schlüssel,
muss er zunächst aus dieser Datei entfertn werden → Siehe Fehlermeldung und Hinweise.

SSH-Key mit Putty generieren

Alternativ ist es möglich, mit dem Programm PuTTYgen, z.B. unter Windows, einen Schlüssel zu
erstellen. Es ist möglich, den angezeigten Block direkt aus PuTTYgen heraus in die entfernte
~/.ssh/authorized_keys des Servers zu kopieren - ggf. die Datei neu erstellen.

Die Datei hat folgende Struktur (alles hintereinander):

ssh-rsa « dieser Text und 1 Leerzeichen
rsa-pub-key « der eigentliche Schlüssel aus Puttygen
Key Kommentar « Im Textblock von puttygen bereits enthalten

Liegt bereits ein SSH-Key vor (z.B. erstellt wie oben beschrieben), kann dieser auch für den Zugriff mit
Putty oder SFTP umgewandelt werden.
Programm PuTTYgen: Private-key importieren und als PuTTY-private-key speichern.

https://www.puttygen.com/download-putty

2026/01/08 10:40 3/11 SSH-Verbindungen

kwiki - https://wiki.bluegnu.de/

Schlüssel von PuTTY können von diversen Systemen (FileZilla, etc.) genutzt werden, sofern der Public-
Key im entfernten Server hinterlegt ist. Da dieser Schlüssel kopier- und übertragbar ist, sollte er
immer zusätzlich mit einem Passwort geschützt sein.

Für Konvertierung Programm PuTTYgen aufrufen.

Load an existing private key file1.
Save private key » jetzt mit Endung .ppk2.

Server konfigurieren

SSH-Zugriffe

Ggf. vorher Installieren

sudo apt-get install openssh-server

sudo nano /etc/ssh/sshd_config

ClientAliveInterval 1200
ClientAliveCountMax 3

PermitRootLogin no
PasswordAuthentication no
Subsystem sftp internal-sftp

Um sich nicht selber auszusperren:
PermitRootLogin nur deaktivieren, sofern ein anderer User Zugriff hat und
PasswordAuthentication nur abschalten, sofern der Zugriff mit dem Key-File auch klappt!

Möglicherweise gibt es Parameter in einem Unterordner, die die Regeln überschreiben.
Möglich, dass dort in einer *.conf-Datei,
z.B. /etc/ssh/sshd_config.d/50-cloud-init.conf, hinterlegt ist: PasswordAuthentication
yes
Das muss dann angepasst werden.

The ClientAliveInterval parameter specifies the time in seconds that the server will wait before
sending a null packet to the client system to keep the connection alive.
The ClientAliveCountMax parameter defines the number of client alive messages which are sent
without getting any messages from the client.
Timeout value = ClientAliveInterval * ClientAliveCountMax
Beispiel: 1200 x 3 = 3600 ~ 1 Stunde.
Nach Änderungen muss der SSH-Service neu gestartet werden.

sudo systemctl reload ssh

Last update: 2025/12/12 21:11 open:it:ssh https://wiki.bluegnu.de/doku.php?id=open:it:ssh&rev=1765570279

https://wiki.bluegnu.de/ Printed on 2026/01/08 10:40

SSH-Zugriff auf VPN beschränken

Debian 13 Server (nur IPv6 öffentlich)
SSH (und SFTP) ausschließlich über WireGuard-VPN (IPv4 10.8.0.0/24)
Firewall: UFW

�️ Zielbild (Soll-Zustand)

SSH nur erreichbar über WireGuard
VPN-Netz: `10.8.0.0/24`
Kein öffentlicher SSH (weder IPv4 noch IPv6)
UFW aktiv
SSH zusätzlich hart an VPN gebunden

✅ Voraussetzungen

Du hast Konsolenzugriff oder funktionierenden VPN-Zugang
WireGuard-Interface heißt `wg0`
Server-VPN-IP z. B. `10.8.0.1`

� Schritt 1 – WireGuard prüfen

ip a show wg0

Erwartet:

inet 10.8.0.1/24 scope global wg0

� Schritt 2 – UFW installieren & Grundregeln

sudo apt update

sudo apt install ufw

Default-Policies:

sudo ufw default deny incoming

sudo ufw default allow outgoing

� Schritt 3 – WireGuard selbst freigeben

(typisch: UDP 51820 – ggf. anpassen)

sudo ufw allow 51820/udp

2026/01/08 10:40 5/11 SSH-Verbindungen

kwiki - https://wiki.bluegnu.de/

� Schritt 4 – SSH **nur** über WireGuard erlauben

(empfohlen: Interface-gebunden)

sudo ufw allow in on wg0 to any port 22 proto tcp

Alternativ:

sudo ufw allow from 10.8.0.0/24 to any port 22 proto tcp

� Schritt 5 – Öffentlichen SSH entfernen (IPv4 + IPv6)

Status anzeigen:

sudo ufw status numbered

Du wirst sehen:

22/tcp (OpenSSH) ALLOW IN Anywhere
22/tcp (OpenSSH (v6)) ALLOW IN Anywhere (v6)

Löschen:

sudo ufw delete allow ssh

oder gezielt per Nummer:

sudo ufw delete <NUMMER>

� Schritt 6 – IPv6 in UFW deaktivieren (wichtig!)

Da SSH nur über IPv4-VPN laufen soll:

sudo nano /etc/default/ufw

Ändern:

IPV6=no

Dann:

sudo ufw reload

� Schritt 7 – UFW aktivieren

Last update: 2025/12/12 21:11 open:it:ssh https://wiki.bluegnu.de/doku.php?id=open:it:ssh&rev=1765570279

https://wiki.bluegnu.de/ Printed on 2026/01/08 10:40

sudo ufw enable

Prüfen:

sudo ufw status verbose

Soll:

22/tcp ALLOW IN on wg0
51820/udp ALLOW IN Anywhere

� Schritt 8 – SSH **hart an WireGuard binden**

� Das ist der entscheidende Sicherheitsanker.

sudo nano /etc/ssh/sshd_config

Eintragen:

AddressFamily inet
ListenAddress 10.8.0.1

Dann:

sudo systemctl restart ssh

� Schritt 9 – Tests (Pflicht!)

❌ Ohne VPN

ssh user@SERVER_IPV6

➡️ muss fehlschlagen

✅ Mit VPN

ssh user@10.8.0.1

➡️ muss funktionieren

� Schritt 10 – Finale Kontrolle

sudo ss -tlnp | grep :22

Soll:

2026/01/08 10:40 7/11 SSH-Verbindungen

kwiki - https://wiki.bluegnu.de/

LISTEN 10.8.0.1:22

❌ nicht erlaubt:

0.0.0.0:22
[::]:22

� Warum dieses Setup Best Practice ist

Ebene Schutz
WireGuard Zugang nur für autorisierte Clients
UFW Filtert Traffic
SSH `ListenAddress` verhindert offenen Port technisch
IPv6 deaktiviert keine „stille“ Umgehung

➡️ Selbst bei Firewall-Fehlern kein öffentlicher SSH möglich

� Kurzfassung (Merkliste)

VPN zuerst testen1.
SSH nur wg0 erlauben2.
OpenSSH (v6) löschen3.
IPv6 in UFW deaktivieren4.
SSH an 10.8.0.1 binden5.

Schutz vor Angriffen mit fail2ban

SSH Login schützen mit fail2ban
How To Protect SSH with Fail2Ban on Debian 11
Installation und Verwendung von Fail2ban unter Debian 12
fail2ban bei Ubuntu-Users

fail2ban installieren

sudo apt update

sudo apt install fail2ban

Conf-Dateien kopieren

sudo cp /etc/fail2ban/jail.conf /etc/fail2ban/jail.local

sudo cp /etc/fail2ban/fail2ban.conf /etc/fail2ban/fail2ban.local

nur die .local-Dateien bearbeiten

sudo nano /etc/fail2ban/jail.local

Ändern (nach [sshd]) suchen:

https://schroederdennis.de/tutorial-howto/ssh-login-schuetzen-mit-fail2ban-server-absichern-anleitung-brute-force/
https://www.digitalocean.com/community/tutorials/how-to-protect-ssh-with-fail2ban-on-debian-11
https://www.howtoforge.de/anleitung/installation-und-verwendung-von-fail2ban-unter-debian-12/
https://wiki.ubuntuusers.de/fail2ban/

Last update: 2025/12/12 21:11 open:it:ssh https://wiki.bluegnu.de/doku.php?id=open:it:ssh&rev=1765570279

https://wiki.bluegnu.de/ Printed on 2026/01/08 10:40

[sshd]

backend=systemd
enabled = true
port = ssh
filter = sshd
logpath = /var/log/auth.log
maxretry = 3

Über die Zeit-Parameter in der Datei /etc/fail2ban/jail.local lässt es sich steuern:
„bantime“ is the number of seconds that a host is banned.
Beispiel: Sperrung(banned) für 1 Stunde, wenn maxrtry innerhalb findtime erreicht wurde
bantime = 3600
A host is banned if it has generated „maxretry“ during the last „findtime“
Beispiel: Zeit (hier 3 Minuten).
findtime = 180
„maxretry“ is the number of failures before a host get banned.
maxretry = 5

Installieren

sudo apt install python3-systemd

fail2ban neu starten

sudo systemctl restart fail2ban

Autostart mit System

sudo systemctl enable fail2ban

Protokoll der (temporär) verbanten IP-Adressen

sudo zgrep 'Ban' /var/log/fail2ban.log*

Verbindungs-Protokolle

Quelle: https://www.strongdm.com/blog/view-ssh-logs

If you want to view ssh logs from a specific time range, you can use the since and until flags. Some
examples:

sudo journalctl -u ssh --since yesterday

sudo journalctl -u ssh --since -3d --until -2d # logs from three days ago

sudo journalctl -u ssh --since -1h # logs from the last hour

sudo journalctl -u ssh --until "2024-12-20 07:00:00"

https://www.strongdm.com/blog/view-ssh-logs

2026/01/08 10:40 9/11 SSH-Verbindungen

kwiki - https://wiki.bluegnu.de/

To watch the ssh logs in realtime, use the follow flag:

sudo journalctl -fu ssh

Use Ctrl-C to exit out of the log monitor.

Login

Login über Linux-Shell

Login mit Passwort:

ssh <USER>@<REMOTEHOST>

<USER>: Benutzername auf Remote-Host. <USER>@ kann weggelassen werden, wenn entfernter
<USER> mit dem lokalen Usernamen übereinstimmt.
<REMOTEHOST>: IP-Adresse des Remote-Host

Login mit Key wenn der key im <REMOTEHOST> bereits hinterlegt ist:

ssh -i <KEY_PFAD> <USER>@<REMOTEHOST>

<KEY_PFAD> z.B.: .ssh/id_rsa
Standardpfad für den Key ist: .ssh/id_rsa wenn er dort liegt, kann „-i <KEY_PFAD>“ weggelassen
werden.
i = identity_file

Beim ersten Login, wenn der public-key noch nicht auf dem Server ist oder dieser sich geändert hat,
muss dieser im Remote-Server registriert werden.

ssh-copy-id <USER>@<REMOTEHOST>

Beim ersten Login erfolgt eine Validierung mit dem Passwort des Systems. Bei Folgeaufrufen nur noch
mit dem PW des SSH-Keys bzw. wenn keines vergeben wurde, ohne PW.

Beim ersten Login werden die dann bekannten Hosts lokal in ~/.ssh/known_hosts gespeichert. Gibt
es Änderungen an einem Host und ggf. damit verbundene Probleme, dann kann der Host daraus, oder
die ganze Datei, gelöscht werden. Wird dann beim nächsten Aufruf neu generiert. Auf dem server
wird der „neue“ Key eines Users eintgetragen in der Datei .ssh/authorized_keys. Für jeden User des
Server-Systems werden die Schlüssel separat in seinem Home-Verzeichnis verwaltet.

Wurde der Schlüssel am Server geändert, oder der Server neu eingerichtet, muss er aus der lokalen
Datei ~/.ssh/known_hosts ausgetragen werden. Händisch oder mit dem Befehl (IP des betroffenen
Servers):

ssh-keygen -f "~/<USER>/.ssh/known_hosts" -R "<REMOTEHOST>"

Last update: 2025/12/12 21:11 open:it:ssh https://wiki.bluegnu.de/doku.php?id=open:it:ssh&rev=1765570279

https://wiki.bluegnu.de/ Printed on 2026/01/08 10:40

Login mit PuTTY

Mit PuTTY die Verbindung wie folgt definieren:

<REMOTEHOST>
Port (weglassen, wenn 22 - Normalfall)
SSH
Name (Saved Session)
/Connection/SSH/Auth/ » Laden: Private Key File1)

Option: /Connection/Data/ » Auto-Login username = <USER>
Option: /Connection/ » Secons between keepalives = 600 (verhindert das auto-lockout)
Zurück auf „Session“ und Save

Login mit FileZilla

Für den Zugriff kann die mit Puttygen generierte .ppk-Datei genutzt werden.
Verbindungsart: Schlüsseldatei.

Dateien kopieren über SSH

Dafür nicht vorab auf dem Remote-Server einloggen, sondern vom lokalen Rechner ausführen.

Kopieren der Datei “foobar.txt” von einem entfernten Rechner auf den lokalen Rechner.

scp <USER>@<REMOTEHOST>:foobar.txt /some/local/directory

Kopieren der Datei “foobar.txt” vom lokalen Rechner auf einen entfernten Rechner.

scp foobar.txt <USER>@<REMOTEHOST>:/some/remote/directory

Kopieren der Datei “foobar.txt” vom Remote-Host “<REMOTEHOST_1>„ auf den Remote-Host
“<REMOTEHOST_2>”.

scp <USER>@<REMOTEHOST_1>.edu:/some/remote/directory/foobar.txt \
<USER>@<REMOTEHOST_2>:/some/remote/directory/

Einzelne Verzeichnisse kopieren.
Kopieren des Verzeichnisses “foo” vom lokalen Rechner in das Verzeichnis “bar” eines entfernten
Rechners.

scp -r foo <USER>@<REMOTEHOST>:/some/remote/directory/bar

Quelle: https://www.davidkehr.com/linux-kopieren-von-und-zu-einem-computer-per-scp-ssh/

1)

Mit Puttygen generierte .ppk-Datei

https://www.davidkehr.com/linux-kopieren-von-und-zu-einem-computer-per-scp-ssh/

2026/01/08 10:40 11/11 SSH-Verbindungen

kwiki - https://wiki.bluegnu.de/

From:
https://wiki.bluegnu.de/ - kwiki

Permanent link:
https://wiki.bluegnu.de/doku.php?id=open:it:ssh&rev=1765570279

Last update: 2025/12/12 21:11

https://wiki.bluegnu.de/
https://wiki.bluegnu.de/doku.php?id=open:it:ssh&rev=1765570279

	SSH-Verbindungen
	SSH-Schlüssel
	SSH-Key unter Linux generieren
	SSH-Key mit Putty generieren

	Server konfigurieren
	SSH-Zugriffe
	SSH-Zugriff auf VPN beschränken
	🛡️ Zielbild (Soll-Zustand)
	✅ Voraussetzungen
	🧩 Schritt 1 – WireGuard prüfen
	🧩 Schritt 2 – UFW installieren & Grundregeln
	🧩 Schritt 3 – WireGuard selbst freigeben
	🧩 Schritt 4 – SSH **nur** über WireGuard erlauben
	🧩 Schritt 5 – Öffentlichen SSH entfernen (IPv4 + IPv6)
	🧩 Schritt 6 – IPv6 in UFW deaktivieren (wichtig!)
	🧩 Schritt 7 – UFW aktivieren
	🧩 Schritt 8 – SSH **hart an WireGuard binden**
	🧪 Schritt 9 – Tests (Pflicht!)
	🔎 Schritt 10 – Finale Kontrolle

	Schutz vor Angriffen mit fail2ban
	Verbindungs-Protokolle

	Login
	Login über Linux-Shell
	Login mit PuTTY
	Login mit FileZilla

	Dateien kopieren über SSH

