2026/01/24 18:30 1/11 SSH-Verbindungen

SSH-Verbindungen

Secure Shell oder SSH bezeichnet ein kryptographisches Netzwerkprotokoll flr den sicheren Betrieb
von Netzwerkdiensten Uber ungesicherte Netzwerke.

Hinweise: https://wiki.ubuntuusers.de/SSH/

Empfehlenswerte Einstellungen fir einen Server, der Uber das Internet erreichbar ist (z.B.
ein Webserver):

/1 « Den direkten Zugang fiir ,root" von AuRen ausschlieRen.
- e Den Zugang mit Passwort von AulBen generell ausschlielSen.
e Zugang nur mit Schlussel.
e Optional z.B. fUr Webserver: Beschrankter Zugriff Uber SFTP auf definierte Bereiche
(HTML-Files ...)

SSH-Schlussel

Far den Zugriff mit einem Schlissel muss zunachst einer generiert werden. Dabei wird i.d.R. ein
SchlUsselpaar generiert, das aus einem privaten und einem o6ffentlichen Schlissel besteht und das
miteinander agiert. Der private Schlussel bleibt lokal und geheim, der 6ffentliche wird an externe
Systeme verteilt.

SSH-Key unter Linux generieren

Auf einem (lokalen) Linux-System das Programm open-ssh-client installieren und Schlussel
generieren.

sudo apt install openssh-client
ssh-keygen -t rsa -b 4096

t = Typ (hier rsa)
b = Schllssellange (hier 4096 Bit)

Sofern nicht anders angegeben, liegt der neue Schlussel automatisch im (versteckten) Verzeichnis
~/.ssh/

Den SchlUssel ohne Passwort zu generieren, vereinfacht das spatere Login, da dann kein Passwort
mehr angegeben werden muss. Die 2FA wird aber empfohlen.

Soll der private Schlussel auf ein anderes Systeme kopiert werden, um ihn auch von dort nutzen zu
konnen: Auf dem neuen System mussen die Zugriffsrechte genauso eingeschrankt werden. Anderfalls
gibt es Verbindungsprobleme.

privater Schlussel: .ssh/id_rsa -rw——- Owner & Group = User

kwiki - https://wiki.bluegnu.de/

https://wiki.ubuntuusers.de/SSH/

Last update: 2025/12/12 21:11 open:it:ssh https://wiki.bluegnu.de/doku.php/open:it:ssh?rev=1765570279

offentl. Schlussel: .ssh/id_rsa.pub -rw-r-r- Owner & Group = User

/> Der private Schlussel muss unbedingt vor fremdem Zugriff geschutzt bleiben!
! " Das betrifft auch den Transfer der Dateien (USB-Stick, E.Mail, etc.)
Versand per E-Mail nur mit verschlUsselter E-Mail!

Bei der Erstellung werden 2 Dateien angelegt:

e id_rsa (privater Schlussel)
e id_rsa.pub (6ffentlicher Schlussel)

Der offentliche Schlissel wird auf das entfernte System Ubertragen, auf das zugegriffen werden soll.
Der private Schlussel bleibt auf dem lokal System, auf dem er generiert wurde. Fir jedes weitere
(lokale) System sollte jeweils ein eigener Schlussel generiert werden.

Werden privater und o6ffentllicher Schlissel auf einen anderen PC kopiert, kann auch von dort aus auf
die Server zugegriffen werden - ohne das der offentliche Schlussel neu auf diese Server Ubertragen
werden muss.

Zur Ubertragung auf einen Server muss der User bereits dort angelegt sein und der Zugriff ohne
Schlussel (mit Passwort) muss temporar freigegeben werden.
Den o6ffentlichen Schlussel (id_rsa.pub) wie folgt auf den Server Ubertragen:

ssh-copy-id <USER>@<REMOTEHOST>

Ersetzen: <USER> und <REMOTEHOST>
Das Passwort vom <REMOTEHOST> wird abgefragt.

Im <REMOTEHOST>-Home-Verzeichnis vom <USER> liegt die Datei ~/.ssh/authorized_keys. In
diese Datei werden die gultigen Public-Keys (automatisch) eingetragen. Das Verzeichnis ist versteckt.
Parallel wird auf dem lokalen (Linux-)Rechner der (neue) entfernte Host in der Datei
~/.ssh/known_hosts aufgenommen. Ist der Host dort bereits enthalten, ggf. mit anderem Schlussel,
muss er zunachst aus dieser Datei entfertn werden - Siehe Fehlermeldung und Hinweise.

SSH-Key mit Putty generieren

Alternativ ist es mdglich, mit dem Programm PuTTYgen, z.B. unter Windows, einen Schllissel zu
erstellen. Es ist moglich, den angezeigten Block direkt aus PuTTYgen heraus in die entfernte
~/.ssh/authorized_keys des Servers zu kopieren - ggf. die Datei neu erstellen.

Die Datei hat folgende Struktur (alles hintereinander):

e ssh-rsa « dieser Text und 1 Leerzeichen
* rsa-pub-key « der eigentliche Schlussel aus Puttygen
e Key Kommentar « Im Textblock von puttygen bereits enthalten

Liegt bereits ein SSH-Key vor (z.B. erstellt wie oben beschrieben), kann dieser auch fur den Zugriff mit
Putty oder SFTP umgewandelt werden.
Programm PuTTYgen: Private-key importieren und als PuTTY-private-key speichern.

https://wiki.bluegnu.de/ Printed on 2026/01/24 18:30

https://www.puttygen.com/download-putty

2026/01/24 18:30 3/11 SSH-Verbindungen

Schlussel von PUTTY kénnen von diversen Systemen (FileZilla, etc.) genutzt werden, sofern der Public-
Key im entfernten Server hinterlegt ist. Da dieser Schlissel kopier- und Ubertragbar ist, sollte er
immer zusatzlich mit einem Passwort geschltzt sein.

FUr Konvertierung Programm PuTTYgen aufrufen.

1. Load an existing private key file
2. Save private key » jetzt mit Endung .ppk

Server konfigurieren
SSH-Zugriffe

Ggf. vorher Installieren
sudo apt-get install openssh-server
sudo nano /etc/ssh/sshd_config

ClientAliveInterval 1200
ClientAliveCountMax 3

PermitRootLogin no
PasswordAuthentication no
Subsystem sftp internal-sftp

Um sich nicht selber auszusperren:
PermitRootLogin nur deaktivieren, sofern ein anderer User Zugriff hat und
PasswordAuthentication nur abschalten, sofern der Zugriff mit dem Key-File auch klappt!

Maoglicherweise gibt es Parameter in einem Unterordner, die die Regeln Uberschreiben.
Maglich, dass dort in einer *.conf-Datei,

z.B. /etc/ssh/sshd_config.d/50-cloud-init.conf, hinterlegt ist: PasswordAuthentication
yes

Das muss dann angepasst werden.

The ClientAlivelnterval parameter specifies the time in seconds that the server will wait before
sending a null packet to the client system to keep the connection alive.

The ClientAliveCountMax parameter defines the number of client alive messages which are sent
without getting any messages from the client.

Timeout value = ClientAlivelnterval * ClientAliveCountMax

Beispiel: 1200 x 3 = 3600 ~ 1 Stunde.

Nach Anderungen muss der SSH-Service neu gestartet werden.

sudo systemctl reload ssh

kwiki - https://wiki.bluegnu.de/

Last update: 2025/12/12 21:11 open:it:ssh https://wiki.bluegnu.de/doku.php/open:it:ssh?rev=1765570279

SSH-Zugriff auf VPN beschranken

Debian 13 Server (nur IPv6 offentlich)
SSH (und SFTP) ausschlieBlich tiber WireGuard-VPN (IPv4 10.8.0.0/24)
Firewall: UFW

[Zielbild (Soll-Zustand)

¢ SSH nur erreichbar uber WireGuard

e VPN-Netz: "10.8.0.0/24"

¢ Kein 6ffentlicher SSH (weder IPv4 noch IPv6)
o UFW aktiv

e SSH zusatzlich hart an VPN gebunden

[0 Voraussetzungen

¢ Du hast Konsolenzugriff oder funktionierenden VPN-Zugang
e WireGuard-Interface heilft "wg0"
e Server-VPN-IP z. B. "10.8.0.1°

[Schritt 1 - WireGuard prufen

ip a show wgO
Erwartet:

inet 10.8.0.1/24 scope global wg0

[Schritt 2 - UFW installieren & Grundregeln

sudo apt update

sudo apt install ufw
Default-Policies:

sudo ufw default deny incoming

sudo ufw default allow outgoing

[Schritt 3 - WireGuard selbst freigeben

(typisch: UDP 51820 - ggf. anpassen)

sudo ufw allow 51820/udp

https://wiki.bluegnu.de/ Printed on 2026/01/24 18:30

2026/01/24 18:30 5/11 SSH-Verbindungen

[] Schritt 4 - SSH **nur** iiber WireGuard erlauben

(empfohlen: Interface-gebunden)
sudo ufw allow in on wg0 to any port 22 proto tcp
Alternativ:

sudo ufw allow from 10.8.0.0/24 to any port 22 proto tcp

[] Schritt 5 - Offentlichen SSH entfernen (IPv4 + IPv6)

Status anzeigen:
sudo ufw status numbered
Du wirst sehen:

22/tcp (OpenSSH) ALLOW IN Anywhere
22/tcp (OpenSSH (v6)) ALLOW IN Anywhere (v6)

Léschen:
sudo ufw delete allow ssh
oder gezielt per Nummer:

sudo ufw delete <NUMMER>

[Schritt 6 - IPv6 in UFW deaktivieren (wichtig!)

Da SSH nur uber IPv4-VPN laufen soll:
sudo nano /etc/default/ufw
Andern:

IPV6=no

Dann:

sudo ufw reload

[] Schritt 7 - UFW aktivieren

kwiki - https://wiki.bluegnu.de/

Last update: 2025/12/12 21:11 open:it:ssh https://wiki.bluegnu.de/doku.php/open:it:ssh?rev=1765570279

sudo ufw enable

Prufen:

sudo ufw status verbose
Soll:

22/tcp ALLOW IN on wg0
51820/udp ALLOW IN Anywhere

[] Schritt 8 - SSH **hart an WireGuard binden**

(] Das ist der entscheidende Sicherheitsanker.
sudo nano /etc/ssh/sshd config
Eintragen:

AddressFamily inet
ListenAddress 10.8.0.1

Dann:

sudo systemctl restart ssh

[] Schritt 9 - Tests (Pflicht!)

##4# [] Ohne VPN
ssh user@SERVER IPV6

= muss fehlschlagen

[] Mit VPN
ssh user@l0.8.0.1

= muss funktionieren

[] Schritt 10 - Finale Kontrolle

sudo ss -tlnp | grep :22

Soll:

https://wiki.bluegnu.de/

Printed on 2026/01/24 18:30

2026/01/24 18:30 7/11 SSH-Verbindungen

LISTEN 10.8.0.1:22
[] nicht erlaubt:

0.0.0.0:22
[::]:22

[] Warum dieses Setup Best Practice ist

Ebene Schutz

WireGuard Zugang nur far autorisierte Clients
UFW Filtert Traffic

SSH "ListenAddress’ |verhindert offenen Port technisch
IPv6 deaktiviert keine ,stille” Umgehung

= Selbst bei Firewall-Fehlern kein é6ffentlicher SSH moglich
[] Kurzfassung (Merkliste)

VPN zuerst testen

SSH nur wgO0 erlauben
OpenSSH (v6) I6schen
IPv6 in UFW deaktivieren
SSH an 10.8.0.1 binden

ke whe

Schutz vor Angriffen mit fail2ban

SSH Login schitzen mit fail2ban

How To Protect SSH with Fail2Ban on Debian 11
Installation und Verwendung von Fail2ban unter Debian 12
fail2ban bei Ubuntu-Users

fail2ban installieren

sudo apt update

sudo apt install fail2ban

Conf-Dateien kopieren

sudo cp /etc/fail2ban/jail.conf /etc/fail2ban/jail.local

sudo cp /etc/fail2ban/fail2ban.conf /etc/fail2ban/fail2ban.local
nur die .local-Dateien bearbeiten

sudo nano /etc/fail2ban/jail.local

Andern (nach [sshd]) suchen:

kwiki - https://wiki.bluegnu.de/

https://schroederdennis.de/tutorial-howto/ssh-login-schuetzen-mit-fail2ban-server-absichern-anleitung-brute-force/
https://www.digitalocean.com/community/tutorials/how-to-protect-ssh-with-fail2ban-on-debian-11
https://www.howtoforge.de/anleitung/installation-und-verwendung-von-fail2ban-unter-debian-12/
https://wiki.ubuntuusers.de/fail2ban/

Last update: 2025/12/12 21:11 open:it:ssh https://wiki.bluegnu.de/doku.php/open:it:ssh?rev=1765570279

[sshd]

backend=systemd

enabled = true

port = ssh

filter = sshd

logpath = /var/log/auth. log
maxretry = 3

Uber die Zeit-Parameter in der Datei /etc/fail2ban/jail.local 1asst es sich steuern:

,bantime” is the number of seconds that a host is banned.

Beispiel: Sperrung(banned) fur 1 Stunde, wenn maxrtry innerhalb findtime erreicht wurde
bantime = 3600

A host is banned if it has generated ,,maxretry” during the last ,findtime*

Beispiel: Zeit (hier 3 Minuten).

findtime = 180

,maxretry” is the number of failures before a host get banned.

maxretry =5

Installieren

sudo apt install python3-systemd
fail2ban neu starten

sudo systemctl restart fail2ban
Autostart mit System

sudo systemctl enable fail2ban
Protokoll der (temporar) verbanten IP-Adressen

sudo zgrep 'Ban' /var/log/fail2ban.log*

Verbindungs-Protokolle

Quelle: https://www.strongdm.com/blog/view-ssh-logs

If you want to view ssh logs from a specific time range, you can use the since and until flags. Some
examples:

sudo journalctl -u ssh --since yesterday
sudo journalctl -u ssh --since -3d --until -2d # logs from three days ago
sudo journalctl -u ssh --since -1h # logs from the last hour

sudo journalctl -u ssh --until "2024-12-20 07:00:00"

https://wiki.bluegnu.de/ Printed on 2026/01/24 18:30

https://www.strongdm.com/blog/view-ssh-logs

2026/01/24 18:30 9/11 SSH-Verbindungen

To watch the ssh logs in realtime, use the follow flag:
sudo journalctl -fu ssh

Use Ctrl-C to exit out of the log monitor.
Login

Login uber Linux-Shell

Login mit Passwort:
ssh <USER>@<REMOTEHOST>

<USER>: Benutzername auf Remote-Host. <USER>@ kann weggelassen werden, wenn entfernter
<USER> mit dem lokalen Usernamen Ubereinstimmt.
<REMOTEHOST>: IP-Adresse des Remote-Host

Login mit Key wenn der key im <REMOTEHOST> bereits hinterlegt ist:
ssh -i <KEY PFAD> <USER>@<REMOTEHOST>

<KEY_PFAD> z.B.: .ssh/id_rsa

Standardpfad flr den Key ist: .ssh/id_rsa wenn er dort liegt, kann ,-i <KEY_PFAD>" weggelassen
werden.

i = identity_file

Beim ersten Login, wenn der public-key noch nicht auf dem Server ist oder dieser sich geandert hat,
muss dieser im Remote-Server registriert werden.

ssh-copy-id <USER>@<REMOTEHOST>

Beim ersten Login erfolgt eine Validierung mit dem Passwort des Systems. Bei Folgeaufrufen nur noch
mit dem PW des SSH-Keys bzw. wenn keines vergeben wurde, ohne PW.

Beim ersten Login werden die dann bekannten Hosts lokal in ~/.ssh/known_hosts gespeichert. Gibt
es Anderungen an einem Host und ggf. damit verbundene Probleme, dann kann der Host daraus, oder
die ganze Datei, geldscht werden. Wird dann beim nachsten Aufruf neu generiert. Auf dem server
wird der ,neue” Key eines Users eintgetragen in der Datei .ssh/authorized_keys. Fur jeden User des
Server-Systems werden die Schlissel separat in seinem Home-Verzeichnis verwaltet.

Wurde der Schlissel am Server geandert, oder der Server neu eingerichtet, muss er aus der lokalen
Datei ~/.ssh/known_hosts ausgetragen werden. Handisch oder mit dem Befehl (IP des betroffenen
Servers):

ssh-keygen -f "~/<USER>/.ssh/known hosts" -R "<REMOTEHOST>"

kwiki - https://wiki.bluegnu.de/

Last update: 2025/12/12 21:11 open:it:ssh https://wiki.bluegnu.de/doku.php/open:it:ssh?rev=1765570279

Login mit PuTTY

Mit PUTTY die Verbindung wie folgt definieren:

e <REMOTEHOST>

e Port (weglassen, wenn 22 - Normalfall)

e SSH

e Name (Saved Session)

e /Connection/SSH/Auth/ » Laden: Private Key File"

e Option: /Connection/Data/ » Auto-Login username = <USER>

e Option: /Connection/ » Secons between keepalives = 600 (verhindert das auto-lockout)
e Zurlck auf ,Session” und Save

Login mit FileZilla

Far den Zugriff kann die mit Puttygen generierte .ppk-Datei genutzt werden.
Verbindungsart: Schliisseldatei.

Dateien kopieren uber SSH

Daflr nicht vorab auf dem Remote-Server einloggen, sondern vom lokalen Rechner ausfuhren.
Kopieren der Datei “foobar.txt” von einem entfernten Rechner auf den lokalen Rechner.

scp <USER>@<REMOTEHOST>:foobar.txt /some/local/directory

Kopieren der Datei “foobar.txt” vom lokalen Rechner auf einen entfernten Rechner.

scp foobar.txt <USER>@<REMOTEHOST>:/some/remote/directory

Kopieren der Datei “foobar.txt” vom Remote-Host “<REMOTEHOST 1>, auf den Remote-Host
“<REMOTEHOST 2>".

scp <USER>@<REMOTEHOST 1>.edu:/some/remote/directory/foobar.txt \
<USER>@<REMOTEHOST 2>:/some/remote/directory/

Einzelne Verzeichnisse kopieren.
Kopieren des Verzeichnisses “foo” vom lokalen Rechner in das Verzeichnis “bar” eines entfernten
Rechners.

scp -r foo <USER>@<REMOTEHOST>:/some/remote/directory/bar

Quelle: https://www.davidkehr.com/linux-kopieren-von-und-zu-einem-computer-per-scp-ssh/

1)

Mit Puttygen generierte .ppk-Datei

https://wiki.bluegnu.de/ Printed on 2026/01/24 18:30

https://www.davidkehr.com/linux-kopieren-von-und-zu-einem-computer-per-scp-ssh/

2026/01/24 18:30 11/11 SSH-Verbindungen

From:
https://wiki.bluegnu.de/ - kwiki

Permanent link:
https://wiki.bluegnu.de/doku.php/open:it:ssh?rev=1765570279

Last update: 2025/12/12 21:11

kwiki - https://wiki.bluegnu.de/

https://wiki.bluegnu.de/
https://wiki.bluegnu.de/doku.php/open:it:ssh?rev=1765570279

	SSH-Verbindungen
	SSH-Schlüssel
	SSH-Key unter Linux generieren
	SSH-Key mit Putty generieren

	Server konfigurieren
	SSH-Zugriffe
	SSH-Zugriff auf VPN beschränken
	🛡️ Zielbild (Soll-Zustand)
	✅ Voraussetzungen
	🧩 Schritt 1 – WireGuard prüfen
	🧩 Schritt 2 – UFW installieren & Grundregeln
	🧩 Schritt 3 – WireGuard selbst freigeben
	🧩 Schritt 4 – SSH **nur** über WireGuard erlauben
	🧩 Schritt 5 – Öffentlichen SSH entfernen (IPv4 + IPv6)
	🧩 Schritt 6 – IPv6 in UFW deaktivieren (wichtig!)
	🧩 Schritt 7 – UFW aktivieren
	🧩 Schritt 8 – SSH **hart an WireGuard binden**
	🧪 Schritt 9 – Tests (Pflicht!)
	🔎 Schritt 10 – Finale Kontrolle

	Schutz vor Angriffen mit fail2ban
	Verbindungs-Protokolle

	Login
	Login über Linux-Shell
	Login mit PuTTY
	Login mit FileZilla

	Dateien kopieren über SSH

